

Pumped hydro energy storage: A key enabler of high penetration of wind and PV in Australia's electricity network

EESA 2018

Dr Matthew Stocks

Research School of Engineering, ANU

Re100.eng.anu.edu.au

Australia's variable renewables

large scale installs (CER data)

Current trajectory >> 50% by 2030

Intermittent Renewables

Stabilize 100% renewable electricity

- Technical diversity
 - 90% PV and wind (+ existing hydro & biomass)
- Wide geographical dispersion (million km²) hugely reduces required storage
 - Smoothing-out local weather
- Demand management
 - Shift loads from night to day, interruptible loads
- Mass storage
 - Pumped hydro: 95% of all storage
 - Advanced batteries

High voltage DC transmission (HVDC)

High voltage DC transmission (HVDC)

- Transmit gigawatts over thousands of km
- Up to +/- 1.1 million volts
- Loss: 10% between Pilbara and Townsville
- >200GW of HVDC systems worldwide
- Examples
 - Basslink (Vic-Tas): 400kV, 290km, 500MW
 - ABB (China): 1100kV, 3000km, 12GW

PUMPED HYDRO STORAGE - HOW IT WORKS

When demand increases, or wind/solar production drops, water runs downhill from upper reservoir

More stable, less variable supply results from adding electricity from turbine to original renewable power

Turbine/Pump

Water runs through turbine, creating electricity

Top

reservoir

On-river pumped hydro storage: Tumut 3

Off-river pumped hydro, Presenzano, Italy

STORES Atlas Site searching

Upper reservoirs

- Identify potential regions
 - >300m head, >15% slope
 - Exclude protected areas

Identify reservoirs locations

- Model watershed
- Simulate 40m dam
- Identify locations with >1GL of storage (~1GWh)

Australia: 22000 sites, 67 TWh Requirement for 100% renewables: 20 sites, ½ TWh

Supply/demand modelling

- Optimise system for energy balance
 - Historic NEM demand data 2006-2010
 - Historic weather (wind and insolation data)
 - Retain existing hydro and biomass generation
- Use genetic algorithm to optimise wind/PV/PHES
 - Size and location

100% renewable scenarios

	PV (GW/TWh)	Wind (GW/TWh)	PHES (GW/h)	Spillage (%)	Levelised Cost of Balancing (\$/MWh)	Levelised Cost of Generation (\$/MWh)	Levelised Cost of Electricity (\$/MWh)	PHES (\$/MWh)	HVDC &AC (\$/MWh)	Spillage & loss (\$/MWh)
Today's costs	23 / 36	45 / 168	16 / 31	7%	28	65	93	14	7	7
Wind PV ~\$50/MWh	30/49	43/159	17/26	9%	25	50	75	13	6	6
No FNQ HVDC link	28/44	46/173	16/29	13	27	50	77	13	5	8

No FNQ HVDC \$2/MWh equates to ~\$400M annual additional cost

Announced pumped hydro proposals

Summary

- Intermittent renewables growing rapidly
- Different system operation
 - Transmission, load management and storage
- Large off-river pumped hydro resource
 - <<1% required to balance supply/demand</p>
- Addition balancing costs modest